3.2.82 \(\int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx\) [182]

3.2.82.1 Optimal result
3.2.82.2 Mathematica [A] (verified)
3.2.82.3 Rubi [A] (verified)
3.2.82.4 Maple [A] (verified)
3.2.82.5 Fricas [B] (verification not implemented)
3.2.82.6 Sympy [F]
3.2.82.7 Maxima [F(-2)]
3.2.82.8 Giac [A] (verification not implemented)
3.2.82.9 Mupad [B] (verification not implemented)

3.2.82.1 Optimal result

Integrand size = 28, antiderivative size = 157 \[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {\sqrt [4]{-1} d^{3/2} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{8 a^3 f}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}+\frac {d \sqrt {d \tan (e+f x)}}{6 a f (a+i a \tan (e+f x))^2}+\frac {d \sqrt {d \tan (e+f x)}}{8 f \left (a^3+i a^3 \tan (e+f x)\right )} \]

output
1/8*(-1)^(1/4)*d^(3/2)*arctan((-1)^(3/4)*(d*tan(f*x+e))^(1/2)/d^(1/2))/a^3 
/f-1/6*d*(d*tan(f*x+e))^(1/2)/f/(a+I*a*tan(f*x+e))^3+1/6*d*(d*tan(f*x+e))^ 
(1/2)/a/f/(a+I*a*tan(f*x+e))^2+1/8*d*(d*tan(f*x+e))^(1/2)/f/(a^3+I*a^3*tan 
(f*x+e))
 
3.2.82.2 Mathematica [A] (verified)

Time = 1.84 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.90 \[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {\left (\frac {1}{48}+\frac {i}{48}\right ) d \sec ^2(e+f x) \left (-3 \sqrt {2} \sqrt {d} \text {arctanh}\left (\frac {(1+i) \sqrt {d \tan (e+f x)}}{\sqrt {2} \sqrt {d}}\right ) \sec (e+f x) (\cos (3 (e+f x))+i \sin (3 (e+f x)))+(1+i) (3 \cos (2 (e+f x))+5 i \sin (2 (e+f x))) \sqrt {d \tan (e+f x)}\right )}{a^3 f (-i+\tan (e+f x))^3} \]

input
Integrate[(d*Tan[e + f*x])^(3/2)/(a + I*a*Tan[e + f*x])^3,x]
 
output
((1/48 + I/48)*d*Sec[e + f*x]^2*(-3*Sqrt[2]*Sqrt[d]*ArcTanh[((1 + I)*Sqrt[ 
d*Tan[e + f*x]])/(Sqrt[2]*Sqrt[d])]*Sec[e + f*x]*(Cos[3*(e + f*x)] + I*Sin 
[3*(e + f*x)]) + (1 + I)*(3*Cos[2*(e + f*x)] + (5*I)*Sin[2*(e + f*x)])*Sqr 
t[d*Tan[e + f*x]]))/(a^3*f*(-I + Tan[e + f*x])^3)
 
3.2.82.3 Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.04, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.464, Rules used = {3042, 4041, 27, 3042, 4079, 27, 2030, 3042, 4032, 27, 3042, 4016, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3}dx\)

\(\Big \downarrow \) 4041

\(\displaystyle -\frac {\int -\frac {a d^2-7 i a d^2 \tan (e+f x)}{2 \sqrt {d \tan (e+f x)} (i \tan (e+f x) a+a)^2}dx}{6 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a d^2-7 i a d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)} (i \tan (e+f x) a+a)^2}dx}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a d^2-7 i a d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)} (i \tan (e+f x) a+a)^2}dx}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 4079

\(\displaystyle \frac {\frac {\int -\frac {12 i a^2 d^3 \tan (e+f x)}{\sqrt {d \tan (e+f x)} (i \tan (e+f x) a+a)}dx}{4 a^2 d}+\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d^2 \int \frac {\tan (e+f x)}{\sqrt {d \tan (e+f x)} (i \tan (e+f x) a+a)}dx}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \int \frac {\sqrt {d \tan (e+f x)}}{i \tan (e+f x) a+a}dx}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \int \frac {\sqrt {d \tan (e+f x)}}{i \tan (e+f x) a+a}dx}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 4032

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \left (\frac {i \sqrt {d \tan (e+f x)}}{2 f (a+i a \tan (e+f x))}-\frac {\int \frac {i a d^2-a d^2 \tan (e+f x)}{2 \sqrt {d \tan (e+f x)}}dx}{2 a^2 d}\right )}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \left (\frac {i \sqrt {d \tan (e+f x)}}{2 f (a+i a \tan (e+f x))}-\frac {\int \frac {i a d^2-a d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx}{4 a^2 d}\right )}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \left (\frac {i \sqrt {d \tan (e+f x)}}{2 f (a+i a \tan (e+f x))}-\frac {\int \frac {i a d^2-a d^2 \tan (e+f x)}{\sqrt {d \tan (e+f x)}}dx}{4 a^2 d}\right )}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 4016

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \left (\frac {d^3 \int \frac {1}{i a d^3+a \tan (e+f x) d^3}d\sqrt {d \tan (e+f x)}}{2 f}+\frac {i \sqrt {d \tan (e+f x)}}{2 f (a+i a \tan (e+f x))}\right )}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {2 a d \sqrt {d \tan (e+f x)}}{f (a+i a \tan (e+f x))^2}-3 i d \left (\frac {(-1)^{3/4} \sqrt {d} \arctan \left (\frac {(-1)^{3/4} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{2 a f}+\frac {i \sqrt {d \tan (e+f x)}}{2 f (a+i a \tan (e+f x))}\right )}{12 a^2}-\frac {d \sqrt {d \tan (e+f x)}}{6 f (a+i a \tan (e+f x))^3}\)

input
Int[(d*Tan[e + f*x])^(3/2)/(a + I*a*Tan[e + f*x])^3,x]
 
output
-1/6*(d*Sqrt[d*Tan[e + f*x]])/(f*(a + I*a*Tan[e + f*x])^3) + ((2*a*d*Sqrt[ 
d*Tan[e + f*x]])/(f*(a + I*a*Tan[e + f*x])^2) - (3*I)*d*(((-1)^(3/4)*Sqrt[ 
d]*ArcTan[((-1)^(3/4)*Sqrt[d*Tan[e + f*x]])/Sqrt[d]])/(2*a*f) + ((I/2)*Sqr 
t[d*Tan[e + f*x]])/(f*(a + I*a*Tan[e + f*x]))))/(12*a^2)
 

3.2.82.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4016
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2*(c^2/f)   Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b 
*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
 

rule 4032
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-(a*c + b*d))*((c + d*Tan[e + f*x])^n/(2*( 
b*c - a*d)*f*(a + b*Tan[e + f*x]))), x] + Simp[1/(2*a*(b*c - a*d))   Int[(c 
 + d*Tan[e + f*x])^(n - 1)*Simp[a*c*d*(n - 1) + b*c^2 + b*d^2*n - d*(b*c - 
a*d)*(n - 1)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && Ne 
Q[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[0, n, 1]
 

rule 4041
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m* 
((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Simp[1/(2*a^2*m)   Int[(a + 
b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n 
 - 1)) - d*(b*c*m + a*d*(n - 1)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Ta 
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] 
 && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (In 
tegerQ[m] || IntegersQ[2*m, 2*n])
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 
3.2.82.4 Maple [A] (verified)

Time = 0.68 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.66

method result size
derivativedivides \(\frac {2 d^{4} \left (-\frac {i \arctan \left (\frac {\sqrt {d \tan \left (f x +e \right )}}{\sqrt {i d}}\right )}{16 d^{2} \sqrt {i d}}+\frac {-\left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}+\frac {10 i d \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+d^{2} \sqrt {d \tan \left (f x +e \right )}}{16 d^{2} \left (i d \tan \left (f x +e \right )+d \right )^{3}}\right )}{f \,a^{3}}\) \(103\)
default \(\frac {2 d^{4} \left (-\frac {i \arctan \left (\frac {\sqrt {d \tan \left (f x +e \right )}}{\sqrt {i d}}\right )}{16 d^{2} \sqrt {i d}}+\frac {-\left (d \tan \left (f x +e \right )\right )^{\frac {5}{2}}+\frac {10 i d \left (d \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}+d^{2} \sqrt {d \tan \left (f x +e \right )}}{16 d^{2} \left (i d \tan \left (f x +e \right )+d \right )^{3}}\right )}{f \,a^{3}}\) \(103\)

input
int((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x,method=_RETURNVERBOSE)
 
output
2/f/a^3*d^4*(-1/16*I/d^2/(I*d)^(1/2)*arctan((d*tan(f*x+e))^(1/2)/(I*d)^(1/ 
2))+1/16/d^2*(-(d*tan(f*x+e))^(5/2)+10/3*I*d*(d*tan(f*x+e))^(3/2)+d^2*(d*t 
an(f*x+e))^(1/2))/(I*d*tan(f*x+e)+d)^3)
 
3.2.82.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 341 vs. \(2 (127) = 254\).

Time = 0.25 (sec) , antiderivative size = 341, normalized size of antiderivative = 2.17 \[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {{\left (12 \, a^{3} f \sqrt {-\frac {i \, d^{3}}{64 \, a^{6} f^{2}}} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (-\frac {2 \, {\left (i \, d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + 8 \, {\left (a^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{3} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {i \, d^{3}}{64 \, a^{6} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{d}\right ) - 12 \, a^{3} f \sqrt {-\frac {i \, d^{3}}{64 \, a^{6} f^{2}}} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (-\frac {2 \, {\left (i \, d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} - 8 \, {\left (a^{3} f e^{\left (2 i \, f x + 2 i \, e\right )} + a^{3} f\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {-\frac {i \, d^{3}}{64 \, a^{6} f^{2}}}\right )} e^{\left (-2 i \, f x - 2 i \, e\right )}}{d}\right ) + {\left (4 \, d e^{\left (6 i \, f x + 6 i \, e\right )} + 4 \, d e^{\left (4 i \, f x + 4 i \, e\right )} - d e^{\left (2 i \, f x + 2 i \, e\right )} - d\right )} \sqrt {\frac {-i \, d e^{\left (2 i \, f x + 2 i \, e\right )} + i \, d}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-6 i \, f x - 6 i \, e\right )}}{48 \, a^{3} f} \]

input
integrate((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x, algorithm="fricas")
 
output
1/48*(12*a^3*f*sqrt(-1/64*I*d^3/(a^6*f^2))*e^(6*I*f*x + 6*I*e)*log(-2*(I*d 
^2*e^(2*I*f*x + 2*I*e) + 8*(a^3*f*e^(2*I*f*x + 2*I*e) + a^3*f)*sqrt((-I*d* 
e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(-1/64*I*d^3/(a^ 
6*f^2)))*e^(-2*I*f*x - 2*I*e)/d) - 12*a^3*f*sqrt(-1/64*I*d^3/(a^6*f^2))*e^ 
(6*I*f*x + 6*I*e)*log(-2*(I*d^2*e^(2*I*f*x + 2*I*e) - 8*(a^3*f*e^(2*I*f*x 
+ 2*I*e) + a^3*f)*sqrt((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I* 
e) + 1))*sqrt(-1/64*I*d^3/(a^6*f^2)))*e^(-2*I*f*x - 2*I*e)/d) + (4*d*e^(6* 
I*f*x + 6*I*e) + 4*d*e^(4*I*f*x + 4*I*e) - d*e^(2*I*f*x + 2*I*e) - d)*sqrt 
((-I*d*e^(2*I*f*x + 2*I*e) + I*d)/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-6*I*f*x 
- 6*I*e)/(a^3*f)
 
3.2.82.6 Sympy [F]

\[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {i \int \frac {\left (d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\tan ^{3}{\left (e + f x \right )} - 3 i \tan ^{2}{\left (e + f x \right )} - 3 \tan {\left (e + f x \right )} + i}\, dx}{a^{3}} \]

input
integrate((d*tan(f*x+e))**(3/2)/(a+I*a*tan(f*x+e))**3,x)
 
output
I*Integral((d*tan(e + f*x))**(3/2)/(tan(e + f*x)**3 - 3*I*tan(e + f*x)**2 
- 3*tan(e + f*x) + I), x)/a**3
 
3.2.82.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 
3.2.82.8 Giac [A] (verification not implemented)

Time = 0.83 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.01 \[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=-\frac {1}{24} \, d^{4} {\left (\frac {3 i \, \sqrt {2} \arctan \left (\frac {8 \, \sqrt {d^{2}} \sqrt {d \tan \left (f x + e\right )}}{4 i \, \sqrt {2} d^{\frac {3}{2}} + 4 \, \sqrt {2} \sqrt {d^{2}} \sqrt {d}}\right )}{a^{3} d^{\frac {5}{2}} f {\left (\frac {i \, d}{\sqrt {d^{2}}} + 1\right )}} + \frac {3 i \, \sqrt {d \tan \left (f x + e\right )} d^{2} \tan \left (f x + e\right )^{2} + 10 \, \sqrt {d \tan \left (f x + e\right )} d^{2} \tan \left (f x + e\right ) - 3 i \, \sqrt {d \tan \left (f x + e\right )} d^{2}}{{\left (d \tan \left (f x + e\right ) - i \, d\right )}^{3} a^{3} d^{2} f}\right )} \]

input
integrate((d*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^3,x, algorithm="giac")
 
output
-1/24*d^4*(3*I*sqrt(2)*arctan(8*sqrt(d^2)*sqrt(d*tan(f*x + e))/(4*I*sqrt(2 
)*d^(3/2) + 4*sqrt(2)*sqrt(d^2)*sqrt(d)))/(a^3*d^(5/2)*f*(I*d/sqrt(d^2) + 
1)) + (3*I*sqrt(d*tan(f*x + e))*d^2*tan(f*x + e)^2 + 10*sqrt(d*tan(f*x + e 
))*d^2*tan(f*x + e) - 3*I*sqrt(d*tan(f*x + e))*d^2)/((d*tan(f*x + e) - I*d 
)^3*a^3*d^2*f))
 
3.2.82.9 Mupad [B] (verification not implemented)

Time = 4.69 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.99 \[ \int \frac {(d \tan (e+f x))^{3/2}}{(a+i a \tan (e+f x))^3} \, dx=\frac {\frac {5\,d^3\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}{12\,a^3\,f}-\frac {d^4\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}\,1{}\mathrm {i}}{8\,a^3\,f}+\frac {d^2\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{5/2}\,1{}\mathrm {i}}{8\,a^3\,f}}{-d^3\,{\mathrm {tan}\left (e+f\,x\right )}^3+d^3\,{\mathrm {tan}\left (e+f\,x\right )}^2\,3{}\mathrm {i}+3\,d^3\,\mathrm {tan}\left (e+f\,x\right )-d^3\,1{}\mathrm {i}}-\frac {\sqrt {\frac {1}{256}{}\mathrm {i}}\,{\left (-d\right )}^{3/2}\,\mathrm {atan}\left (\frac {16\,\sqrt {\frac {1}{256}{}\mathrm {i}}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {-d}}\right )\,2{}\mathrm {i}}{a^3\,f} \]

input
int((d*tan(e + f*x))^(3/2)/(a + a*tan(e + f*x)*1i)^3,x)
 
output
((5*d^3*(d*tan(e + f*x))^(3/2))/(12*a^3*f) - (d^4*(d*tan(e + f*x))^(1/2)*1 
i)/(8*a^3*f) + (d^2*(d*tan(e + f*x))^(5/2)*1i)/(8*a^3*f))/(3*d^3*tan(e + f 
*x) - d^3*1i + d^3*tan(e + f*x)^2*3i - d^3*tan(e + f*x)^3) - ((1i/256)^(1/ 
2)*(-d)^(3/2)*atan((16*(1i/256)^(1/2)*(d*tan(e + f*x))^(1/2))/(-d)^(1/2))* 
2i)/(a^3*f)